
Thirsty Rovio – Autonomous Mini-Keg Locating Robot

Jeff Melville and Tim Sams

Abstract— Vision and planning are two critical and
evolving fields in the field of robotics. This project
seeks to implement planning, vision, and classification
algorithms in the context of locating a Heineken mini-
keg with an unknown environment. The algorithms will
be implented on the WowWee Rovio commerical robot
platform. The environment was restricted to spaces such
as hallways where the predominant direction of motion
is apparent. The types and arrangement of obstacles
remains unknown and must be avoided as the robot
navigates in search of the mini-keg.

I. INTRODUCTION

Our project, entitled Thirsty Rovio, was to use the
Wowwee Rovio webcam platform to move through a
hallway environment and identify a Heineken brand
mini-keg, shown in Fig. 1. Simple to use home robotics
platforms are increasingly popular for many of these
types of projects because they are inexpensive and
relatively simple to use. While our time with the
Rovio was not without despair, it proved to be an able
platform for our image algorithms in order to identify
said mini-keg. Our methods were such that we were
not limited too much by the movement capabilities of
the robot, but more so by the camera and the images
we were able to acquire. All of our software algorithms
were written in the C# language using .NET wrappers
that we found available as open source libraries [4], [3].
All of our vision algorithms were implemented using
OpenCV libraries from [2]. In order to find the keg we
implemented both motion and vision algorithms. This
report will detail the specific nature of our implemented
algorithms and the results we were able to achieve with
these installations.

II. PLATFORM

A. Hardware

In order to understand the operation of our algo-
rithms and software, its important to have a good
introductory grasp of the WowWee Rovio platform.
The Rovio robot (Fig. 2) is a webcam equipped robot
with 3 wheels that is capable of movement in all
directions on any floor. We found, however, that the
motion was much more precise when used on carpet

Fig. 1. Heineken mini-keg

versus a smoother floor like tile, but will comment more
on this later. The connection to the robot is through a
Wi-Fi area network. You can configure the robot to
create its own ad-hoc network or you can connect it to
an existing network in your location. We found that it
would respond better when using the private ad-hoc
version because there was relatively no other traffic
on that network compared to a public network like on
the Cornell campus. You can control the robot in two
different ways: through the web interface provided or
through the API by sending HTML based commands.
The web interface is somewhat limited and provides
very little in terms of actual custom programming.
That being said, the web interface is very useful in the
event that your custom programming becomes frozen
or when you need to change several of the settings
on the robot itself. We accessed the Rovios instruction
set programmatically by sending specifically formatted
HTML addresses as described in [5]. For our purposes
we found it easier to use a modified version of an
existing C# library, as discussed below.

B. Software

This project utilized two software libraries to accom-
plish its goal. The first library was RovioLib [3], an C#
implementation of the published Rovio control API.
This library enabled control of the Rovio and access
to sensor and webcam data. Some desired functionality
was not implemented in the current version of RovioLib



Fig. 2. WowWee Rovio

and was added. In particular, the camera, IR sensor,
and localization functions were added to RovioLib
for this project. The extra functionality will be con-
tributed back to the RovioLib project. RovioWrap [4],
which is written in VB.NET, was also used briefly
before switching to RovioLib for language consistency.
RovioWrap source code assisted in adding functionality
to RovioLib.

The second major library used in this project was
Emgu CV [2]. Emgu CV is a .NET wrapper for Open
CV, Intel’s open source computer vision library. In ad-
dition to exposing the standard Open CV functionality,
Emgu CV also encapsulates Open CV into managed
classes for a more object oriented environment.

III. APPROACH

A. Navigation

In Fig. 3, you can see a graphical representation of
our algorithm for the Rovios motion. This all runs in
our main program loop that updates for each frame of
image data from the camera. First we look at the newest
frame to see if there is a box drawn that indicates a
green object. If there is not a box drawn, then we poll
the infrared sensor to see if there is an object currently
detected. In if there is, we move left or right based
on the canny edge detection direction decision. If there
is not an object here we continue to move the robot
in a forward direction. Now if there is a box drawn
we again check to see if there is an object detected.
If there is an object detected here, we move on to
the SVM classifier and if that passes, we have found
our Heineken keg. If the object in stage two has not
been found, we check to see if the center of the box
is located in the center of the image, to the left, or to
the right. Depending on the direction, we compensate
for the direction offset by moving and then continue
the loop back to the beginning. In the even that we
reach the SVM decision process and it is not a match,

Fig. 4. Canny Edge Detection w/ Obstacle

we avoid the obstacle just like before, using the Canny
edge detection method in Section III-B.

B. Obstacle Avoidance

When the Rovio encounters an obstacle, the Rovio
needs to avoid it without losing track of its original
trajectory, as described in Section III-A. Avoiding the
obstacle includes the decision whether to go around
the obstacle on its left side or its right side. The Rovio
IR sensor indicates the presence of an obstacle without
any information about its size or orientation. A vision
algorithm was developed to assist in the “left-or-right”
decision. The first step was to perform a Canny edge
detection on the current webcam image. Fig. 4 shows
the output of the Canny edge detection when the Rovio
IR sensor first detected this obstacle, which is a box in
the right half of the image.

From this image, several assumptions are made. The
first assumption is that an obstacle will always produce
an edge where it meets the floor. The second is that
this edge will occur in a narrow range of y-coordinates
in the image if the image is taken immediately when
the IR senses a new obstacle. Third, the texture in
the floor is insufficient to show edges with the applied
algorithm parameters. Finally, walls will create edges
in the extreme x-coordinates of the image.

From these assumptions, it follows that for obstacle
avoidance, two regions of interest exist within the
image. They each occupy the narrow range of y-
coordinates, across x-coordinates except for the left and
right sides. The division of the regions is in the middle
of the picture, as shown in Fig. 5. It also follows that
the region with more white pixels contains the obstacle,
and that the Robot should move to the other side.



Fig. 3. Navigation Control

Fig. 5. Obstacle Detection Regions

C. Keg Classification

To accomplish its goal, the Rovio must be able to
determine when there is a Heineken mini-keg within
the frame. As shown in Fig. 1, a Heineken mini-keg
is a distinct color of green. The first stage of the clas-
sification algorithm leverages this characteristic. First,
the webcam image is Gaussian filtered and converted
to a HSV (Hue, Saturation, Value) representation. The
HSV representation more directly correlates to whether
a pixel is “green” rather than having a “green com-
ponent.” The Hue layer, shown in Fig. 6, is the most
important for detecting green areas. The mini-keg is
visible in the foreground center of the figure.

The next step is to create a binary image representing
whether pixels are green or not. This is accomplished
by creating a hue mask. OpenCV represents hue as
a value from 0-180. The desired range of green hues
is represented from 45 to 85. A mask is also used
on the saturation layer to remove white pixels. The
resulting binary image is edge and countour detected to
determine green areas. The area of interest is defined
as the rectangular enclosure of all contours with an
area greater than a threshold value, which was experi-
mentally determined. Contours with areas below this
threshold are considered noise in the detection, and
are not enclosed within the area of interest.The area
of interest is shown in the live webcam image with a
colored box, as show in Fig. 7.

This first phase will eliminate other brands of mini
keg and micellaneous objects because they are not
green. However, any object with the selected hues of
green will generate a region of interest. To refine the de-
tection, a SVM (Support Vector Machine) classifier was
implemented. Instead of operating on each pixel, the
SVM can use a histogram as its feature representation
[1]. The histogram is advantageous because it reduces
the vector space and reduces sensitivity to translation
and certain rotation effects. The implemented SVM
operates on a RGB histogram of the image cropped
to the region of interest. Each dimension of the image
space is split into 5 bins, for a vector length of 125.
The histogram is normalized to account for the fact that



the region of interest will not always have the same
number of pixels. The SVM uses a linear kernel with
parameters that are automatically optimized by Open
CV. The SVM trained on program startup using the
contents of two different folders as its training data,
one for each class. The training data consisted of 68
negative images and 66 positive images. Removing the
background information before processing reduced the
amount of training data necessary.

During operation, the SVM will outline the region
of interest in pink for positive predictions (Fig. 8), and
in black for negative predictions (Fig. 9).

IV. RESULTS

As a whole, our keg-finding methods worked like we
expected them to. Throughout the process, however,
we experienced many issues which definitely slowed
us down. First, we experienced many problems when
it comes to control of the Rovio. Its almost impossible
to have very precise and consistent control of the robot
itself. An example of this is when we would try to
strafe in either direction. Due to the design of the
wheels, the strafing caused the robot to basically make
a 90 degree turn in the opposite direction of the strafe
because one of the wheels would catch on the floor.
We found that this was somewhat minimized when we
operated on carpet, but still presented a major problem.
In order to overcome this we had to implement many
fixes that would adjust when we had to initiate a strafe.
One method was to use the navigation signal from the
base station which provides an angle theta value as a
difference from the perpendicular of the base. Using
this, we were mostly able to correct the angle problem.

Fig. 6. Visualization of Hue Layer

Fig. 7. Region of Interest

Fig. 8. Positive Classification

Another major hurdle was the fact that our Rovio
would hardly charge at all. After doing some research,
it appears that this is a very common problem with the
platform, and WowWee has not yet provided a fix for
this problem. This required us to wait as much as 30
minutes between our test runs and caused our testing
to be extremely lengthy.

For classification, the SVM training error is summa-
rized in Table I. The SVM classifier was 80% accurate
and was unfortunately more prone to false negatives
than false positives. Better accuracy would have been
desirable, but in most cases the SVM performed ade-
quately. Much of the negatively classified training data
never would have been evaluated by the SVM in the
final system because it lacked sufficient green content.
In operation, the SVM performance seemed to be
sensitive to the lighting in the room of operation. When

Fig. 9. Negative Classification



Classification Samples Errors Accuracy (%)
Positive 67 11 83.6
Negative 68 16 76.4

Total 135 27 80.0

TABLE I
SVM TRAINING ERROR

we were working it seemed that the light intensity or
amount of light being let into the room could cause
false positives and negatives on the identification of the
keg. Moving to a different room than where the testing
data was taken also impacted results. Despite these few
setbacks, the Rovio was able to effectively locate and
identify the keg in the majority of our tests.

V. CONCLUSION

Overall, we were satisfied with the outcome of our
project. The project largely fulfilled its original de-
sign objectives. The Rovio successfully discriminated
between the Heineken keg and other objects the vast
majority of the time, especially in the selected environ-
ment. The navigation segment worked reasonably well,
despite correcting for issues with the Rovio dynamics.
We saw the difficulties that can arise from imple-
menting even fairly simple planning algorithms on a
real, imperfect platform. However, it was rewarding to
see class concepts implemented in a functional and
entertaining project. The project also exposed us to
practical methods and libraries for utilizing what had
previously been mostly abstract mathematical concepts.
The main disappointment was the difficulties operating
the Rovio, as discussed in Section IV. An interesting
follow up would be to implement similar algorithms on
a different robotics platform and compare the results.
Some aspects of the algorithms could also be improved.
For example, the vision based obstacle avoidance al-
gorithm could maintain a weighted memory system
of predictions to improve performance avoiding ob-
stacles that take up larger portions of the field of
view when the IR sensor triggers. The SVM classifier
could be tweaked to improve performance in different
environments or light intensities. Some ideas include
using a different kernel or a different feature vector
such as a higher dimension and/or HSV histogram.
Experimenting with SURF feature detection on the
mini-keg could be interesting as well.

VI. ACKNOWLEDGEMENTS

We would like to thank Professor Saxena and the
TA’s for exposing us to the concepts explored in this

project, as well as providing time resources to assist
its implementation. The RoboCommunity.com forums
were helpful in working around Rovio issues and
assuring that we were not alone in our difficultues. The
project also would not have been possible without the
software libraries mentioned in Section II-B.

REFERENCES

[1] Olivier Chapelle, Patrick Haffner, and Vladimir Vapnik, SVMs
for histogram-based image classification, 1999.

[2] Emgu Developers, Emgu CV: OpenCV in .NET, http://
www.emgu.com, 2010, [Online; accessed 24-April-2010].

[3] Serg Podtynnyi, Rovio API library (.NET), http://
roviolib.codeplex.com, 2010, [Online; accessed 1-
May-2010].

[4] Scott Settembre, RovioWrap, http://roviolib.
codeplex.com, 2010, [Online; accessed 15-March-2010].

[5] WowWee, WowWee rovio API specifications, 1.2 ed., October
2008, http://www.wowwee.com/static/support/
rovio/manuals/Rovio_API_Specifications_v1.
2.pdf.


